Student Progress and Achievement

Examining factors that contribute to student progress and achievement in the Colleges of the Kern Community College District

Prepared by the District Institutional Research Team

District Institutional Research Team

Bakersfield College: Ann Morgan, Ed.D.
Heidi Gilliard

Cerro Coso Community College: Tina Tuttle

Porterville College: Michael Carley

District Office: Lisa Fitzgerald
Presentation Content

• Project Background
• Cohort Description
• College Pathway Model
• Methodology
• Findings
• Discussion and Questions

Research Questions

How do different factors and student characteristics contribute to success?

How do these factors function at the three colleges in student success?
Project Outline

- Chancellor’s Office (CCCO) ARCC outcomes data linked to local data
- Various contributory factors from literature reviews were considered
- Intensive data validation for both accuracy and understanding
- Statistical analysis
- Interpretation of results

ARCC SPAR

One of the eight college indicators reported by ARCC is Student Progress and Achievement Rate (SPAR)

- Student progress and achievement defined by one of five measures
  - Counts coursework and outcomes from other colleges

SPAR Success

1) Earning of an associate’s degree
2) Earning of a vocational certificate
3) Transfer to a 4-year college
4) Achieving "transfer directed" status
5) Achieving "transfer prepared" status
Cohort Description

The three cohorts of the 2010 ARCC report were examined

- Students with ‘Intent to Complete’ were tracked for six years
- The 2001-02, 2002-03, and 2003-04 cohorts were combined into one dataset to increase sample size

Some students were removed from the original cohort

- Attended only in a summer term and never returned
- Under age 13 in their first term

ARCC outcomes data were linked to the district’s data warehouse to include factors that may have contributed to student success

Given that each college varies in its student population, policies, and practices, a separate analysis was conducted for each college

<table>
<thead>
<tr>
<th></th>
<th>Bakersfield</th>
<th>Cerro Coso</th>
<th>Porterville</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-02</td>
<td>2,452</td>
<td>600</td>
<td>745</td>
<td>3,789</td>
</tr>
<tr>
<td>2002-03</td>
<td>2,468</td>
<td>527</td>
<td>775</td>
<td>3,759</td>
</tr>
<tr>
<td>2003-04</td>
<td>2,249</td>
<td>502</td>
<td>564</td>
<td>3,303</td>
</tr>
<tr>
<td>Total</td>
<td>7,169</td>
<td>1,629</td>
<td>2,084</td>
<td>10,851</td>
</tr>
</tbody>
</table>
Research Model

Modeling moves from describing an outcome (e.g. 58% White or 62% success rate) to exploring the effects of many factors simultaneously on an outcome.

We tested variables known in success research against SPAR achievement.

We adapted a well-known “workable models approach” to assess student success.

Model Factors Tested

Modified Pathway Model

- **background**
  - Gender
  - Ethnicity
  - Age

- **intent**
  - Application Date
  - Current Goal
  - Major

- **preparation**
  - Writing Level
  - Math Level

- **entry**
  - Assessment
  - Orientation
  - Seen Counselor
  - Student Ed Plan

- **academic**
  - Unit Load
  - Success Course

- **financial aid**
  - Any type of financial aid

Model adapted from Tinto (1976); St John et al. (1994, 2000, etc); Adelman (1999 & 2007); Hossler et al. (1999 & 2006)
Methodology

Used Sequential Logistic Regression to “model” the student pathway data analytically

– Allows examination of all factors together that influence student progress and achievement
– Permits us to see the effect of each student pathway factor on Student Progress and Achievement with odds ratios while controlling for the other factors

What is an Odds Ratio?

Example: An odds ratio of 0.33 would be 67% less likely of something occurring.

Example: An odds ratio of 1.7 can be thought of as 70% more likely of something occurring.
Findings

**Background: Age, Gender**

Women at BC and PC were more likely than men to achieve SPAR (34% and 33% respectively).

At CC and PC, as students’ age increased, their chances of achievement decreased slightly.

Women at BC and PC were more likely than men to achieve SPAR (34% and 33% respectively).

At CC and PC, as students’ age increased, their chances of achievement decreased slightly.

- **Gender**
  - Female : Male

- **Age**
  - Age measured on an interval scale and does not have a comparison group

**Standard significance (p<0.05)**

*Marginal significance (0.05<p<0.10)

1 Age is measured on an interval scale and does not have a comparison group
Background: Ethnicity

When controlling for all other factors, ethnicity has little effect on student success.

- **Standard significance (p<0.05)**
- *Marginal significance (0.05<p<0.10)

1 It was necessary to combine ethnicity categories to adhere to statistical requirements. At BC and PC, the ‘other’ ethnicity category includes African American, American Indian, Asian, Filipino, Pacific Islander, ‘other’ and unknown ethnicities. At CC, Hispanic/Latino students were also included in the ‘other’ category.

---

College Admission Application Timing: a silent proxy for academic preparation?

**GENERAL COLLEGE ADMISSIONS CYCLE**

Although the traditional college admission cycle is thought to be more relevant to 4-year institutions, this study tested whether admission application time was related to long term student success.

Categories used in the study:
- "Old Date"
- "Dec-Apr"
- "May-Dec"
- "Spring"

- Prior Year Applied
  - Pre-Dec 1

- Early Applicants
  - Most likely to be traditional students tuned in to "go-to-college" messages

- Late Applicants for Fall
  - More likely to be those wavered on going to college and adult students uninfluenced by the high school "go-to-college" messages

- "Late Entry" Began in Spring

Students who were included in categories "Old Date", "Dec-Apr", "May-Dec", were enrolling in Fall. Spring enrollees could have applied at any time.
**Intent/Aspiration: Admission Date**

Of the four date groups, the most successful group—those who applied Dec thru April (early applicants) prior to fall—were chosen as the comparison group.

At BC and PC, those who were admitted in the spring semester were less likely to be successful.

At CC, achieving SPAR was much less likely for all groups compared to early applicants.

**Standard significance (p<0.05)**

**Marginal significance (0.05<p<0.10)**

**Intent/Aspiration: Ed Goal, Major**

Students at BC and PC who chose an educational goal in their first term were more likely to achieve SPAR, than those that had not selected a goal. The same effect was not evident in the selection of a major.

At CC, selecting an educational goal or a major was negatively associated with SPAR success. A selected major compared to unknown/undecided—one third less likely.

**Standard significance (p<0.05)**

**Marginal significance (0.05<p<0.10)**
Placement

Because academic preparation prior to enrollment is such a strong predictor of college success, the study needed a proxy (replacement) measure since neither SAT/ACT nor high school GPA are available.

Placement test results were used as academic preparation indicators.

The following findings discuss how different placement levels predict success on SPAR.

Placement: Writing

All three colleges demonstrated a very strong relationship between student placement level and chances of being successful at SPAR.

The only exception to this pattern were students at BC who placed “1 level below transfer” were 27% more likely to achieve SPAR than students who placed at “transfer level”.

** Standard significance (p<0.05)
* Marginal significance (0.05<p<0.10)
Placement: Math

At BC and CC, the higher students placed in math, the greater their odds of success at SPAR.

This observation was consistent at both colleges and became more pronounced the further down they placed from transfer level.

At PC, students scoring into level 3, the lower level, were about half as likely to achieve SPAR as those who tested higher, into level 2, a large group.

Placement: BC Remediation

Remedial placement carries a higher risk for non-completion, and even controlling for other factors, this study lends strong support to that observation. Requiring remediation in one area decreased odds by 42%; in two areas 62%, three areas 73%.

It is interesting to note that students who took no placement tests were nearly equivalent in success odds as those testing into two remedial areas when compared to those who did not require remedial work.

** Standard significance (p<0.05)
* Marginal significance (0.05<p<0.10)
Entry: Matriculation Variables

The Entry variables function as the gateway and guidance to college.

At PC, students who completed orientation were 37% more likely to achieve SPAR; completing any part of the matriculation process was linked to long term success.

At BC, completing an ed plan increased chances of success by 33%. At CC completing assessment or an ed plan increased success.

Academic: Attempted Units, Success Course

At PC, students who passed a student success course were 54% more likely to achieve SPAR.

At BC, the more units a student attempted, the greater their chances were at success.
Financial Aid

At all three schools, the odds of students who received financial aid achieving success were less than students who did not receive aid. This finding was significant at BC and PC.

Financial Aid
(comp group: No financial aid)

Received financial aid

** Standard significance (p<0.05)
* Marginal significance (0.05<p<0.10)

Discussion and Questions
Placement test results were the best predictor of success. Those who did not take placement tests had success rates similar to those who tested several levels below transfer.

While the components of matriculation are important to success, many students do not complete them.

Though resources are dwindling, student services are clearly and measurably important to student success.

In at least one of our colleges, Student Success Courses were shown to improve odds of success but SB1440 rules may limit whether we can require such courses.
Implications For Our Colleges

What could colleges do to help students select majors and goals that fit their academic ability?

The study of **admission dates** in this project suggest several possibilities:

1. Students who apply early are likely better prepared students. Should practitioners focus more success services on later applicants who may be less-prepared?

2. Colleges may want to explore the admission and matriculation processes and their role in student success, particularly if they have substantial online populations.

Implications For ARCC-SPAR Policy

Should the following students be in the SPAR cohort?

- Young students
  - (should there be a minimum age? What should it be?)

- Special admits

- Students who already have a college degree
  - (self-reported)
Questions
Logistic Regression Results Showing Odds Ratios Indicating Probability of Achieving ARCC SPAR Success

Each factor has a comparison group - using Gender at BC as an example, females were 1.34 times more likely to be successful compared to males. Highlighted figures in the 'Odds Ratio' columns were statistically significant.

<table>
<thead>
<tr>
<th>Pathway Points Factor, Categories and Comparison or Referent Group</th>
<th>Bakersfield College BC Odds Ratio</th>
<th>Cerro Coso Community College CC Odds Ratio</th>
<th>Porterville College PC Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Background</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age(^1) Continuous : No Comparison(^1)</td>
<td>1.00</td>
<td>0.99 *</td>
<td>0.99 **</td>
</tr>
<tr>
<td>Gender Female : Male</td>
<td>1.34 **</td>
<td>0.92</td>
<td>1.33 **</td>
</tr>
<tr>
<td>Ethnicity Differs by College … Hispanic/Latino : White/Caucasian</td>
<td>0.94</td>
<td>Other: White/Caucasian</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Other : White/Caucasian</td>
<td>1.17 **</td>
<td>Other : White/Caucasian</td>
</tr>
<tr>
<td><strong>Intent/Aspiration</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admission Date Old date : Dec - Apr</td>
<td>1.02</td>
<td>0.54 **</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>Spring entry : Dec - Apr</td>
<td>0.86 *</td>
<td>0.46 **</td>
</tr>
<tr>
<td></td>
<td>May-Dec : Dec-Apr</td>
<td>0.98</td>
<td>0.53 **</td>
</tr>
<tr>
<td>Current Goal Selected : Unknown/Undecided</td>
<td>1.19 **</td>
<td>0.88 **</td>
<td>1.19</td>
</tr>
<tr>
<td>Major Declared : Unknown/Undeclared</td>
<td>0.90 *</td>
<td>0.68 **</td>
<td>0.84 *</td>
</tr>
<tr>
<td><strong>Preparation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing or English Placement Differs by College … Each level below transfer compared to the transfer level course</td>
<td>1.26 *</td>
<td>1.63 **</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>1 level - ENGLB50 : ENGLB1A</td>
<td>1.26 *</td>
<td>1.63 **</td>
</tr>
<tr>
<td></td>
<td>2 levels - ENGL B60 : ENGLB1A</td>
<td>0.92</td>
<td>0.47 **</td>
</tr>
<tr>
<td></td>
<td>3 levels - ACDV B68 : ENGLB1A</td>
<td>0.70 **</td>
<td>0.20 **</td>
</tr>
<tr>
<td></td>
<td>4 levels - Add'l Test : ENGLB1A</td>
<td>0.62</td>
<td>0.13 *</td>
</tr>
<tr>
<td></td>
<td>No test : ENGLB1A</td>
<td>0.79 **</td>
<td>No test : ENGL101</td>
</tr>
<tr>
<td>Math Placement Differs by College … Each level below transfer compared to the highest transfer level course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer level B1B/B1 : MATHB6A</td>
<td>0.58 **</td>
<td>0.58 **</td>
</tr>
<tr>
<td></td>
<td>Transfer level B1A/BC : MATHB6A</td>
<td>0.39 **</td>
<td>0.59 **</td>
</tr>
<tr>
<td></td>
<td>1 level - MATHBD : MATHB6A</td>
<td>0.26 **</td>
<td>0.42 **</td>
</tr>
<tr>
<td></td>
<td>2 levels - MATHBA : MATHB6A</td>
<td>0.30 **</td>
<td>0.34 **</td>
</tr>
<tr>
<td></td>
<td>3 levels - MATHB50 : MATHB6A</td>
<td>0.18 **</td>
<td>0.56 **</td>
</tr>
<tr>
<td></td>
<td>4 levels - Add'l Testing : MATHB6A</td>
<td>0.15 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No test : MATHB6A</td>
<td>0.30 **</td>
<td></td>
</tr>
<tr>
<td>Remediation BC Only</td>
<td>Remedial 1 Area : No Remedial</td>
<td>0.58 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remedial 2 Areas : No Remedial</td>
<td>0.38 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remedial 3 Areas : No Remedial</td>
<td>0.27 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No test : No Remedial</td>
<td>0.40 **</td>
<td></td>
</tr>
<tr>
<td><strong>Entry</strong></td>
<td>Had Assessment : No/Refused</td>
<td>0.90</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>Had Orientation : No/Refused</td>
<td>1.01</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Had Counseling : No/Refused</td>
<td>1.06</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Did Ed Plan : No/Refused</td>
<td>1.33 **</td>
<td>1.22</td>
</tr>
<tr>
<td><strong>Academic</strong></td>
<td>Attemptd Units(^1) Continuous : No Comparison(^1)</td>
<td>1.06 **</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Success Crse Passed Success Crse : No Crse</td>
<td>1.10</td>
<td>--</td>
</tr>
<tr>
<td><strong>Financial Aid</strong></td>
<td>Financial aid Awarded Aid : No Aid</td>
<td>0.82 **</td>
<td>0.81</td>
</tr>
</tbody>
</table>

\(^{1}\)Age and Attempted Units are treated as interval (continuous) variables and have no comparison group.

** standard statistical significance (p < 0.05)
* marginal statistical significance (0.05 < p < 0.10)